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ABSTRACT

In this paper a new approach is presented for efficient computation
of the vector potentials arising in the problem of a current element radiating
ovér a lossy half-space. The present approach departs from the conventional
ones in that it works primarily with the transform domain representations
rather than with the Sommerfeld integrals which are the corresponding spatial
domain counterparts. The key step in the present method is to approximate
the transforms using a suitable approximation which is valid for a wide range
of parameters of practical interest. The approximated transforms can be
inverted in a closed form for the horizontal component of the vector potentials
(Hx), and can be expressed in a computationally efficient form for the vertical
component (Hz). Numerical results illustrating the accuracy of the method are
presented in the paper and some estimates of comparative computational times

also are included.
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1. Introduction

The conventional approach to analyzing antenna structures radiating
in the presance of a lossy half-space involves repeated evaluation of the
Sommerfeld integrals appearing in the expressions for the vector potentials
[1]. Since the evaluation of these infinite integrals is an extremely
time-consuming process, much attention has been focused in recent years on
developing techniques for efficiently evaluating the Sommerfeld integrals
without unduly sacrificing the accuracy [2-8. However, even the latest
reported techniques for evaluating the Sommerfeld integrals are 40 to 100
times slower than the Reflection Coefficient Method (RCM), which evaluates
these integrals asymptotically and is valid for large kr (where k is the
free space wave number, and r is the distance between the image and
observation points).

In this paper, we present a new approach for rapid and accurate
numerical evaluation of the vector potentials that avoids the tedious task
of handling the Sommerfeld integrals. We begin with the two-dimensional
Fourier transforms of the vector potentials which are conveniently expressed
in simple closed forms. Next, we show that under a suitable approximation
the inverse transform of the vector potentials can be performed analytically
using a set of identities. The resulting space domain expressions are either
expressed in a closed form or require evaluating a finite integral. These
expressions are valid for a wide range of frequencies, ground parameters, and
observation points.

In the following sections, the use of the above procedure is demonstrated
by considering a horizontal current element over lossy ground, and several
numerical examples are included to illustrate the accuracy and computational

efficiency of the method. We find that the computational time is only slightly
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larger than the reflection coefficient method (RCM) and the accuracy of the

results is good for a wide range of parameters of practical interest.

2. Transformed Vector Potentials

The fields radiated by a horizontal current element over a lossy
ground (see Fig. 1) can be expressed in terms of two vector potential

components Hx and nz [5,8]. We define the following two-dimensional Fourier

‘

transform pair:

-

‘ T = I I T exp(-j(ax + 3y)] dx dy (1a)
- Zl—z [ | # explitox + 8] da a3 (1b)
" -0

where the ~ on top represents the transformed quantities. It has been
shown [5,8] that, using the exp(jwt) time convention and for observation
points above the lossy ground, the following expressions for the vector

potentials satisfy the Maxwell's equations and the required boundary

conditions:
-
B e iE i %
]x Hx + Hx + Onx (2a)
5 | 1
T[x = IO Tyl—- exp [~j Yllz-h“ (2b) E
%r -1
T = Io zj—{l exp[-j Yl(z+h)] (2¢)
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Figure 1. Geometry and the coordinate systems for the current
element P. radiating over imperfect ground, where

elr = 1 and EZr = Er - jc/(weo) has been assumed.
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To=I

1
— - -+h (24)
and
1 ity +h (3)
M, =1, jo 1, exp(-j Yl(z )]
where
v, = 62 - a2 - 8212 mmer) <05 112 (4)
I. = (jue.c )-1 Idx' (4b)
0 0 1r
2l . - 4
ki U TPCHNCIN i =1,2 (4c)
= 4d
- e—21‘-/t':1r e (4d)

Equations (2b) and (2c) are the solutions to the problem of a current element
radiating in free space and can be interpreted as the direct and the
reflected contributions to the field at the observation point for a perfectly

conducting ground. Their inverse transforms are expressed in the following

well-known space domain forms:




i
nx = Io exp(-j kl rl) / 4#:1 (5a)

Lo, e 5b)
- rIx IO exp(-j kl rz) / lurrz (

where (rl,81,¢l) and (t2,92,¢2) are the spherical coordinate systems

erected at the source and its image point respectively. Equations (2d)

and (3) are the correction terms to the perfect ground solution and are not
directly amenable to inversion in closed forms. Traditionally, these two
equations are transformed into space domain representations comprised of
infinite integrals that are oscillatory in nature. These integral representa-
tions take many different forms and the following are examples which

e contain the Hankel functions:

1 @
o= O 2 12 01 exp(-jz, @9 ar
ki _4{ AT + JekI-AT A . e

and

I 2 / 7 T
0 2 vk?—) - vkKy=X (2)
M =-—2 cos¢ [ 2 = H (e ,2)
;: ‘ﬂkl 2 VK212 + Vikc-r2 . .
1t 1
o B D (6b)
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The integrals appearing in equations (6a) and (6b), better known as the
Sommerfeld integrals, are quite time-consuming to evaluate and rc¢present

a major hurdle to the task of efficient analysis of antennas located

over a lossy ground. Many of the recent works in the literature [6;8]
have concentrated on the problem of reducing the computational time
required in the evaluation of the Sommerfeld integrals without sacrificing
the accuracy beyond a tolerable level. In the following sections, an
alternate apprcach is proposed for Fourier inverting (2d) and (3) in a
more direct manner which circumvents the need for computing the Sommerfeld

integrals (6a) and (6b).

3. Approximate Expressions for the Transformed Vector Potentials

An examination of the expressions for transformed vector potentials
given in (2d) and (3) reveals two important and useful properties. First,
both of the equations have an identical z-variation that corresponds to a
space domain solution emanating from the image point of the original
dipole source. Second,it is apparent that the two equations are well
behaved in the Fourier transform domain and decay exnonentially to zero
outside the circle az + B2 = ki.

Starting from the transform pair (2c) and (5b), one can generate

a set of useful identities by successively applying the operator 3/3z to

the transform pair. We have, for instance-

Q = Y?-l exp[-J 1 (2+h) ] (7a)
n
Q= 2(1)’“'1 _a;_ - [ (R S (7b)
9z
6

Py




where g is the free-space Green's function

g(x,vy,2) = exp(-] kg rzl / 4mr, T, = Vx4 + y< + (z+h)< . (8)

We a2lso note that the successive partial derivatives of g can be obtained
explicitly; hence, (7b) is expressible in a closed form. We will now
attempt to approximate the transformed vector potentials O&x and iz’

given in (2d) and (3), such that the inverse transform operation is performed
via (7a=b) without an undue sacrifice in the accuracy. To this end, we

introduce the only approximation needed to accomplish this goal, by letting

1 ) 1 (9

Kuo and Mei (7, Eq. 8] have employed this approximation to manipulate the
Sommerfeld integrals (6) and have found it to be accurate inside

the o + 32 = k% circle for most practical parameter ranges of interest.
In addition, outside the circle of visible range, the decaying exponential

overcomes most of the arrors introduced by the substitution of (9) imto

(2d) and (3).

3a. Approximation for Ik

The transform O:K, given in (2d), can bSe written in the following

L (ry=vy) axp (-] vy (z+h) ] (10)

0% 00 2
0N G ,

4
[ ]




Introducing the approximation in (9) and using the identities in (7),

one can express the space-domain expression for Hx in a closed form

0

Joe 2
2vk 3 2 3
F H*I—_-—g-l g - (11)
0"x 0 jkl (1-x) 23z 0 ki 1o) 3z2

Before closing this subsection, it may be worthwhile to point out
one of the key differences between the Kuo and Mei scheme (7] and the present
method, both of which employ identical approximations. In contrast to ;
the method in [7], the present approach requires no numerical integration

and generates the Onx solution entirely in a closed form.

3b. Approximation for 1,

The expression for Hz, given in (3), can be rearranged into the

following form

= & a Y9
Hz = I0 —';— [1-(x+1) ;T—Ty—] exp[-j Y, (z+h)] . (12)
kl< 1 2

Again introducing the approximation expressed in (9), one can further

simplify (12) into

52 - 1, :129— exp(-3 v, (z+0)] - I e ferl) p (13)
; K k,
1 1
£ where
P e ;ﬂft exp(-j yl(z+h)] (14a)
c = kl//.<_ ; (14b)
8
A R s e 2

T, - - w




The space-domain expression for Iz can now be expressed in cerms of P,

the inverse transform of P, given in (l4a) as

—E =2 3 {1 e{edl) o o
ALz Io ‘—k g 7 4 IO 3 It . (15)

2 3 2
1 < k1 <
t Using the identities in (7), it can be shown that P satisfies the following

f» first-order linear inhomogeneous differential equation

i_: - jcP = 2j - (16)

The boundary condition required for the above differential equationm can be

imposed by evaluating the asymptotic solution to the vector potential

expression in (15), derived in (5], at an observation point which is

L . sufficiently high above ground. The asymptotic solutiom is given bv
T
- cos §, - vk-sin“d,
f B~ 2 1. cos ¢, sin 8. cos © = =
o . 0 2 2 2

; RS ——
<cos 9, + v<-sin‘37

. exp(-jklr,)/énrz (17a)
Using (L7a) in (13), we arrive at
i
. -1 - # 32
e ? ! B ———— —— o g L; 1 T .
: (z") (D) IO 1,4 (g') « 2 g g(z") (17b)

where z' is a suitable height at which the RCQY aporoximacion in (17a)
is valid. We point out that for the sake of simplicity, the x and v
dependencas of zhe ?, :’a’ and 3 have been suppressed from their arzuments.

The solution for ? can be obtained by inregrating (16) and one can arrive

ac che following form which is convenient for numerical computation:

9

. s e <=




"—w__,m i TR — 1

(z+h) /A (z'+h) /2 T_ (present method)
2 x 108

]
.42 .50 1.82 ~ §.953
.42 .75 1.76 - j1.39
.42 1.00 1.57 - j1.31
.42 1.25 1.64 ~ j1.22
.42 1.50 1.68 ~ j1.29
.42 1.75 1.63 ~ j1.30
.42 2.00 1.62 = j1.25

3 4

At (z+h)/A = .42 Exact I x10 = 1.58 ~ j1.29 3
s At (z+h)/\ = .42 RCM T_ x 103 = 1.64 - .773

TABLE 1. Demomstration of the stability of the present technique for
evaluating T , as a function of z'. For this example,
€, * 10, ¢ & .01 mhos/m, frequency = 18 MHz, rz/x = .6,

@ and 82 = 45°,
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P(2) = (2(z') - 21 = 8(z')] exp (jc (z=2")] + 2§ % 8(2)

r A
-2¢c exp(jcz) i f& g(z2) exp(~jcz) dz . (18)
z'

Several important features of the integral appearing in (18) will
now be pointed out. First, as seen in Table 1, the results of integration
are quite stable as a function of z'. For example, for z'/A > 1.0 the
difference berween the exact Hz values and those computed by using the
expression derived here is less than 57 for z/\ = 0.42. Second,. for the
range of parameters investigated thus far, the integrand has been found to
be quite smooth. This is due partly to the fact that the singularity
associated with g is located at Pz (see Fig. 1) and because the range of
integration is less than one wavelength. As a result of these properties,
the numerical intagration in (18) can be carried out quite rapidly.

Finally, because the parameter z appears onlv in cthe limit of che
integral, and not in the integrand itself, the values of vector potential
Iz along an encire vertical line can be rapidly generated by simply marching
on the incremental integration steps. This is in contrast to the conventional
integrals where the entire integrand must be recomputed for each value of

the observation point z.

4. Numerical Results and Conclusions

Tables 2-5 compare the accuracy of the present Ozx and Iz expressions,
given in (1l) and (15), with those obtained via the exact and asymptotic
avaluations of the Sommerfeld integrals. The present technique is virtually

as accurate as the exact integration for a relatively hign conducting zround

(or |<| large) such as sea water (see Tables 2-3) even for axtremely small

15




image to observation point distance rzlk. For less conducting grounds

(or |x| small), the approximation of Yy defined by (9) introduces some
errors as rZ/A decreases (see Tables 4-5). However the results are still
useful for most practical antenna problems and remain superior to those

derived by using the RCM method.

The procedure has been successfully tested for a wide variety of Ty

§,, and [«| > 5. On the Cyber-175 computer, the evaluation of a oy and T,

pair for a given observation poinf required ~ 5 msec for the present technique,

while the RCM method needed ~ 1 msec, and a recent efficient Sommerfeld exact

integration technique [5,8] typically required 40-60 msec of computing time.
Although not discussed here, it is worthwhile to mention that the

problem of a vertical dipole radiating over a lossy ground can be handled

in a similar manner. The analysis of various antenna structures, comprising

both horizontal and vertical wire sections over a lossy ground, will appear

in a future communication.
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